Kalzn
文章22
标签14
分类7
FFT前置知识及FFT\FFT分治

FFT前置知识及FFT\FFT分治

首先依次介绍FFT(快速傅里叶变换)前置知识: 复数及单位根
复变函数欧拉定理 单位根三大引理 多项式的系数与点值表示法 多项式的求值与插值(顺介绍拉格朗日插值法) 向量卷积

复数及单位根

我们知道复数可以写成,其中为实部,为虚部.而且一个复数可以在一个复平面上表示出来,而我们可以将其写成极坐标的形式而根据欧拉定理:

则有:,这里给出乘法的例子:

下面介绍单位根: 如果存在复数,则其根被称作单位根,显然单位根的模为1,其中我们定义单位根:

其中定义主n次单位根(当k==1时):

而在程序中我们一般写成三角函数形式:

这里给出复数运算模板代码:

1
2
3
4
5
6
7
8
9
10
11
12
struct Complex
{
double r, i;
Complex() {}//无参函数不要写东西!易超时
Complex(double r, double i)
:r(r), i(i) {}
}f[N], g[N];
Complex operator + (const Complex & a, const Complex & b)
{return Complex(a.r + b.r, a.i + b.i);}
Complex operator - (const Complex & a, const Complex & b)
{return Complex(a.r - b.r, a.i - b.i);}
Complex operator * (const Complex & a, const Complex & b)
下面给出单位根的三大引理

多项式的两种表示方法: 第一种非常常见的系数表示法,及,,另外我们给出另一种表示方法,点值表示法,及用n+1种不同的取值代入,组成的集合:

我们分析两种表示方法: 系数表达式: 求值:我们可以使用秦九昭算法得出, 求和:两个表达式的各项系数相加,是求积:一个表达式相乘的各项都需要和另一个的各项相乘,是点值表达式: 求值:我们使用拉格朗日插值法可以在的出系数表达式并求值(插值的定义一会给出) 这里给出拉格朗日插值法的公式(n项表达式):

并有模板: P4781 【模板】拉格朗日插值 下面是模板代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
const int N = 2e3+5;
const ll mod = 998244353;
ll a[N], b[N];
ll inv(ll a, ll b)
{
ll res = 1;
while(b)
{
if (b&1) res = res * a % mod;
b >>= 1;
a = a * a % mod;
}
return res % mod;
}
int main()
{
int n; ll k;
cin >> n >> k;
for (int i = 1; i <= n; i++)
scanf("%d%d", &a[i], &b[i]);
ll sum = 0;
for (int i = 1; i <= n; i++)
{
ll ans = b[i];
ll fa = 1, fb = 1;
for (int j = 1; j <= n; j++)
{
if (j == i) continue;
fa = (fa * (k - a[j] + mod)%mod)%mod;
fb = (fb * (a[i] - a[j] + mod)%mod)%mod;
}
ans = (ans * fa % mod * inv(fb, mod-2)%mod)%mod;
sum = (sum + ans)%mod;
}
printf("%lld\n", sum);
}
求和:两个表达式的各项点值的值相加,是求积:两个表达式的各项点值的值相乘,是的 我们不难发现,如果我们相求两个多项式的积(系数向量分别是),在点值表达式的情况下将十分高效.这时新表达式(系数向量是c)的第i项系数为:

我们则称的卷积,记作,两个多项式相乘,就是对应的两个系数向量的卷积, 我们将一个点值表达式转化为系数表达式称为插值. 由此可见:如何提高多项式求值与插值的效率.决定着两个表达式相乘的效率!

话讲完,正式下面介绍FFT

首先看DFT(离散傅里叶变换) 我们将单位根带入到系数表达式(方便起见下式中替代)中:

记作 每次求值为所以离散傅里叶变换最终时间复杂度为 这样显然是不行的,毕竟直接相乘的时间复杂度都是 然后就有了FFT: 我们对于一个n项系数表达式(n为2的幂数):

可以分成:

这时我们发现一个及其有趣的事实:

而根据(1),(2)两个引理:我们最终有:

$$

{

.

$$

于是问题得以递归解决: 时间复杂度为 ###### 逆FFT 我们的多项式不可以FFT过去弄不过来了!比较简单, 因为:

所以:

证明略,总之就是证明原向量矩阵可逆 所以我们稍加改动就可以逆FFT,就是将单位根的指数取相反数,最后结果再乘1/n 所以两个多项式的乘积,使其对应系数向量的卷积!可以有:

不过我们很少书写递归代码,这里使用迭代写法; 这里还牵扯到两个点:位逆序置换 蝴蝶操作,不说了...直接上代码吧 P3803 【模板】多项式乘法(FFT)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
const int N = 3e6+5;
const double pi = acos(-1);
struct Complex
{
double r, i;
Complex() {}
Complex(double r, double i)
:r(r), i(i) {}
}f[N], g[N];
Complex operator + (const Complex & a, const Complex & b)
{return Complex(a.r + b.r, a.i + b.i);}
Complex operator - (const Complex & a, const Complex & b)
{return Complex(a.r - b.r, a.i - b.i);}
Complex operator * (const Complex & a, const Complex & b)
{return Complex(a.r * b.r - a.i * b.i, a.i * b.r + a.r * b.i);}
int rev[N];
int len, lim = 1;
void init(int n)
{
while(lim <= n) lim <<= 1, len++;
for (int i = 0; i < lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len-1));
}
void FFT(Complex *a, int op)//op为1是FFT运算,-1是FFT逆运算
{
for (int i = 0; i < lim; i++)
if (i < rev[i]) swap(a[i], a[rev[i]]);
for (int dep = 1; dep <= log2(lim); dep++)
{
int m = 1 << dep;
Complex wn = Complex(cos(2.0 * pi / m), op * sin(2.0 * pi / m));
for (int k = 0; k < lim; k += m)
{
Complex w = Complex(1, 0);
for (int j = 0; j < m / 2; j++)
{
Complex t = w * a[k + j + m / 2];
Complex u = a[k + j];
a[k + j] = u + t;
a[k + j + m / 2] = u - t;
w = w * wn;
}
}
}
if (op == -1) for (int i = 0; i < lim; i++)
a[i].r /= lim;
}
int main()
{
int n, m;
cin >> n >> m;
init(n + m);
for (int i = 0; i <= n; i++) scanf("%lf", &f[i].r);
for (int i = 0; i <= m; i++) scanf("%lf", &g[i].r);
FFT(g, 1); FFT(f, 1);
for (int i = 0; i <= lim; i++) f[i] = f[i] * g[i];
FFT(f, -1);
for (int i = 0; i <= n + m; i++)
printf("%d ", (int)(f[i].r + 0.5));
return 0;
}
FFT分治 【模板】分治 FFT 根据cdq分治思想, 我们在计算多项式的一个系数的时候,要统计之前的所有影响。我们区间折半递归解决,先解决左区间的数值,然后统计其对右区间的影响,累加到右区间。 洛谷模板需要取模,故模板代码使用NTT,值得注意的是,洛谷模板的模数998244353,符合NTT所要求的素数类型,且存在原根为3。 下面是模板代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
const int N = 1e6+5;
const int G = 3;
const ll mod = 998244353;
ll f[N], g[N];
ll a[N], b[N];
int rev[N], n;
int len, lim = 1;
void init(int n)
{
lim = 1; len = 0;
while(lim <= n) lim <<= 1, len++;
for (int i = 0; i < lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len-1));
}
ll _pow(ll a, ll b) {
//....
}
inline void calcrev(int logn)
{
rev[0]=0;
for(int i = 1; i < (1 << logn); i++)
rev[i]=(rev[i>>1]>>1)|((i&1)<<(logn-1));
}
void NTT(ll *a, int led, int op)//op为1是FFT运算,-1是FFT逆运算
{
int lim = 1 << led;
//......

}
void cdq_fft(int l, int r, int logn)
{

if (logn <= 0) return ;
if (l >= n) return ;
int mid = (l + r) >> 1;
ll t = _pow(r - l, mod-2);
cdq_fft(l, mid, logn - 1);
calcrev(logn);
memset(a + (r - l) / 2, 0, sizeof(ll) * (r - l) / 2);
memcpy(a, f+l, sizeof(ll) * (r - l) / 2);
memcpy(b, g, sizeof(ll) * (r - l) );
NTT(a, logn, 1); NTT(b, logn, 1);
for (int i = 0; i < r - l; i++) a[i] = a[i] * b[i] % mod;
NTT(a, logn, -1);
for (int i = (r - l) / 2; i < r - l; i++)
f[l + i] = (f[l+i] + a[i]) % mod;
cdq_fft(mid, r, logn-1);
}
int main()
{
cin >> n;
init(n);
for (int i = 1; i < n; i++) scanf("%lld", &g[i]);
f[0] = 1;
cdq_fft(0, lim, len);
for (int i = 0; i < n; i++)
printf("%lld ", (f[i] + mod) % mod);
puts("");
return 0;
}

本文作者:Kalzn
本文链接:http://kalzncc.github.io/2020/02/26/104524783/
版权声明:本文采用 CC BY-NC-SA 3.0 CN 协议进行许可
除此之外,本文不做正确性担保,本人不对产生的问题负责。
×